
Theseus for RAG Workflows
Maximize Data Freshness and Tokenize on the Fly

Embed vector search right in SQL, enabling familiar query patterns to unleash GPU-accelerated 
petabyte-scale retrieval for blazing-fast, hassle-free RAG performance.

On-demand Vectorization In-Situ with Theseus

Maximize Data Freshness
and Tokenize on the Fly

Adopt scalable AI pipelines 
using SQL

Running your RAG pipeline at enterprise scale, data 
(code, documents, presentations, etc.) is constantly 
changing, and has to be constantly retokenized. 
This takes massive GPU datacenters hours to days 
to compute. And like driving a new car off the lot, 
it’s immediately lost 20% of its value. 

What if instead of tokenizing all of your data ahead, 
you just did it runtime? What if you can use the 
freshest data without the overhead?

Embedding vector search and retrieval capabilities 
directly in SQL eliminates costly, inefficient external 
data pipelines and complex orchestration, impro-
ving performance and reducing operational over-
head and compute costs.

Embed vector search pipelines directly into stan-
dard SQL workflows to seamlessly integrate power-
ful LLM capabilities within critical data analytics 
pipelines. Integrating SQL-based Retrieval-Aug-
mented Generation (RAG) helps data engineers 
deliver more precise, timely business insights at 
significantly lower cost and complexity.

Unlike traditional approaches that pre-compute embeddings for entire datasets, Theseus performs on-demand 
vectorization, generating embeddings only when needed. This approach significantly reduces computational 
overhead while maintaining rapid response times.

Seamless Vector Search in SQL
Embed vector similarity search as a user-defined function (UDF) inside SQL queries with no external pipelines 
or orchestration required.

Run at Petabyte Scale
Thanks to GPU acceleration, Theseus can process 
structured and semi-structured datasets measured 
in petabytes, delivering results in seconds, not hours.

Feed LLMs with Structured Context
Use real-time production data as context for LLM 
responses. Your models now generate 
domain-specific, up-to-date insights using SQL 
queries on live data.

Reduce Infrastructure and Ops Overhead
No need to stitch together Python libraries, vector 
DBs, and APIs. Fewer moving parts mean 
faster performance and lower compute costs.

Efficient data location
Theseus orchestrates multi-step querying across 
knowledge graphs, structured data, and vector 
spaces for LLMs to receive precisely curated 
information to generate high-quality responses.

Traditional RAG pipelines rely heavily on Python 
orchestration, vector databases (e.g., Pinecone, FAISS, 
Cassandra, Chroma), making it complex to integrate into 
production SQL environments, leading to inefficiencies at 
scale, and increasing retrieval costs.

Traditional RAG pipeline performance 
significantly deteriorates when introducing 
complex operations such as joins, sorts, 
aggregations, or filters across multiple retrieval 
sources.

Drawbacks of Traditional RAG Approaches
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Retrieval Method

Theseus

Infrastructure

Scale

Others

SQL dialect, structured & vector Similarity search with embeddings

GPU-accelerated, SQL-native engine Python libraries, vector databases

Petabyte scale, structured and semi-structured Document-level, small-to-medium scale

Target User Data engineers, SQL analysts AI developers, data scientists

Use Cases Enterprise analytics, SQL pipelines Document retrieval, chatbots, QA systems

Example RAG Pipeline with JIT Tokenization 
and Embedding

Try Theseus Today. Learn more : 

Contact us  :

https://voltrondata.com/theseus

https://voltrondata.com/contact

The Advantages of Theseus

Theseus leverages SQL-native vector search and GPU-accelerated query performance for production-scale, 
structured, and performance-critical applications.

Build RAG Pipelines with SQL Statements

Optimized for Scale
Efficiently process petabyte-scale 
datasets with integrated GPU 
acceleration.

Native SQL Integration
Utilize familiar SQL query patterns 
to seamlessly incorporate RAG
techniques.

Performance Efficiency
Built-in query optimization reduces 
complexity and ensures high-performance 
retrieval without manual tuning.

Pull in RAW data into GPU memory 
(CSV, Parquet, JSON)

Generate embeddings in situ

Search embeddings in situ
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Inference/LLM in situ·

for example, news articles with metadata and 
URL to news source.

scrape text from news articles and generate 
embeddings with a GPU tokenizer using tools like 
Hugging Face and Triton Inference

use a vector search tool or library like Pinecone, 
Quadrant, AstraDB or NVIDIA cuVS to search 
embeddings for articles relevant to the 
question asked.

feed relevant articles alongside the user question 
and generate a response using Langchain, 
RaySegve or AWS Bedrock.

k = 100
user_question = "“Where are earthquakes causing 
damage?”"

result = con.sql(f"""
SELECT 
    source_url, source_text,  rag.find_neares-
t_neighbor_distances(
        embedding, '{user_question}'
    ) AS distance_result
FROM gdelt_text_embeddings
ORDER BY
distance_result ASC
LIMIT {k}
""").to_pyarrow()
agent_response = chat.ask(user_question, 
result['source_text'])

pprint(agent_response[0].as_py())

Python
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