
Theseus for RAG Workflows
Maximize Data Freshness and Tokenize on the Fly

Embed vector search right in SQL, enabling familiar query patterns to unleash GPU-accelerated
petabyte-scale retrieval for blazing-fast, hassle-free RAG performance.

On-demand Vectorization In-Situ with Theseus

Maximize Data Freshness
and Tokenize on the Fly

Adopt scalable AI pipelines
using SQL

Running your RAG pipeline at enterprise scale, data
(code, documents, presentations, etc.) is constantly
changing, and has to be constantly retokenized.
This takes massive GPU datacenters hours to days
to compute. And like driving a new car off the lot,
it’s immediately lost 20% of its value.

What if instead of tokenizing all of your data ahead,
you just did it runtime? What if you can use the
freshest data without the overhead?

Embedding vector search and retrieval capabilities
directly in SQL eliminates costly, inefficient external
data pipelines and complex orchestration, impro-
ving performance and reducing operational over-
head and compute costs.

Embed vector search pipelines directly into stan-
dard SQL workflows to seamlessly integrate power-
ful LLM capabilities within critical data analytics
pipelines. Integrating SQL-based Retrieval-Aug-
mented Generation (RAG) helps data engineers
deliver more precise, timely business insights at
significantly lower cost and complexity.

Unlike traditional approaches that pre-compute embeddings for entire datasets, Theseus performs on-demand
vectorization, generating embeddings only when needed. This approach significantly reduces computational
overhead while maintaining rapid response times.

Seamless Vector Search in SQL
Embed vector similarity search as a user-defined function (UDF) inside SQL queries with no external pipelines
or orchestration required.

Run at Petabyte Scale
Thanks to GPU acceleration, Theseus can process
structured and semi-structured datasets measured
in petabytes, delivering results in seconds, not hours.

Feed LLMs with Structured Context
Use real-time production data as context for LLM
responses. Your models now generate
domain-specific, up-to-date insights using SQL
queries on live data.

Reduce Infrastructure and Ops Overhead
No need to stitch together Python libraries, vector
DBs, and APIs. Fewer moving parts mean
faster performance and lower compute costs.

Efficient data location
Theseus orchestrates multi-step querying across
knowledge graphs, structured data, and vector
spaces for LLMs to receive precisely curated
information to generate high-quality responses.

Traditional RAG pipelines rely heavily on Python
orchestration, vector databases (e.g., Pinecone, FAISS,
Cassandra, Chroma), making it complex to integrate into
production SQL environments, leading to inefficiencies at
scale, and increasing retrieval costs.

Traditional RAG pipeline performance
significantly deteriorates when introducing
complex operations such as joins, sorts,
aggregations, or filters across multiple retrieval
sources.

Drawbacks of Traditional RAG Approaches

·

·

·

·

·

Retrieval Method

Theseus

Infrastructure

Scale

Others

SQL dialect, structured & vector Similarity search with embeddings

GPU-accelerated, SQL-native engine Python libraries, vector databases

Petabyte scale, structured and semi-structured Document-level, small-to-medium scale

Target User Data engineers, SQL analysts AI developers, data scientists

Use Cases Enterprise analytics, SQL pipelines Document retrieval, chatbots, QA systems

Example RAG Pipeline with JIT Tokenization
and Embedding

Try Theseus Today. Learn more :

Contact us :

https://voltrondata.com/theseus

https://voltrondata.com/contact

The Advantages of Theseus

Theseus leverages SQL-native vector search and GPU-accelerated query performance for production-scale,
structured, and performance-critical applications.

Build RAG Pipelines with SQL Statements

Optimized for Scale
Efficiently process petabyte-scale
datasets with integrated GPU
acceleration.

Native SQL Integration
Utilize familiar SQL query patterns
to seamlessly incorporate RAG
techniques.

Performance Efficiency
Built-in query optimization reduces
complexity and ensures high-performance
retrieval without manual tuning.

Pull in RAW data into GPU memory
(CSV, Parquet, JSON)

Generate embeddings in situ

Search embeddings in situ

·

·

·

Inference/LLM in situ·

for example, news articles with metadata and
URL to news source.

scrape text from news articles and generate
embeddings with a GPU tokenizer using tools like
Hugging Face and Triton Inference

use a vector search tool or library like Pinecone,
Quadrant, AstraDB or NVIDIA cuVS to search
embeddings for articles relevant to the
question asked.

feed relevant articles alongside the user question
and generate a response using Langchain,
RaySegve or AWS Bedrock.

k = 100
user_question = "“Where are earthquakes causing
damage?”"

result = con.sql(f"""
SELECT
 source_url, source_text, rag.find_neares-
t_neighbor_distances(
 embedding, '{user_question}'
) AS distance_result
FROM gdelt_text_embeddings
ORDER BY
distance_result ASC
LIMIT {k}
""").to_pyarrow()
agent_response = chat.ask(user_question,
result['source_text'])

pprint(agent_response[0].as_py())

Python

1
2

3
4
5
6

7
8
9
10
11
12
13
14

16
17

